Recent Publications & Preprints
- The centrality of population-level factors to network computation is demonstrated by a versatile approach for training spiking networks
DePasquale, B, Sussillo, D., Abbott, L.F., Churchland, M.M. (2023)
in press at Neuron - Neural population dynamics underlying evidence accumulation in multiple rat brain regions
DePasquale, B., Brody, C.D., Pillow, J. (2022)
in revision at eLife - Recurrent dynamics of prefrontal cortex during context-dependent decision-making
Cohen Z, DePasquale, B., Aoi, M., Pillow, J. (2020)
bioRxiv - Task-dependent changes in the large-scale dynamics and necessity of cortical regions
Pinto, L., Rajan, K., DePasquale, B., Thiberge, S.Y., Tank, D.W., Brody, C.D. (2019)
Neuron, 104(4), 810-824. e9 - full-FORCE: A target-based method for training recurrent networks code
DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S. & Abbott, L.F. (2018)
PLoS One 13(2): e0191527 - Error-correcting dynamics in visual working memory
Panichello, M.F., DePasquale, B., Pillow, J.W. & Buschman, T.J. (2018)
Nature Communications 10, Article number: 3366 - Building functional networks of spiking model neurons
Abbott, L.F., DePasquale, B., Memmesheimer, R.-M. (2016)
Nature Neuroscience 19:350-355
For a full list of publications, see Brian’s Google Scholar.